TRS-80 MODEL VI

SERIES | I
EDITOR
ASSEMBLER

LRV TRS-80

A DIVISION OF TANDY CORP.

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK

TRS-80 Series-1 Tape/Disk Editor/Assembler © 1981 Tandy Corpo-
ration. All rights reserved.

Derived from original Tape Editor/Assembler © 1978 Microsoft.

Licensed to Tandy Corporation.
Series 1 Editor Assembler Manual © 1981 Tandy Corporation. All
rights reserved.

Reproduction or use without express written permission from Tandy
Corporation, of any portion of this manual is prohibited. While rea-
sonable efforts have been taken in the preparation of this manual io
assure its accuracy, Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual, or from the use of the
information obtained herein.

Please refer to the Software license on the back of this manual for lim-
itations on use and reproduction of this Software package.

NOTICE TO MODEL III OWNERS OF THE
SERIES I EDITOR/ASSEMBLER
Catalog Number 26-2011

When operating the Editor/Assembler, you will use the
<SHIFT> key to type certain symbols, such as &, #, $, or *,
Use the LEFT <SHIFT> key only. Do not Tuse the right
<SHIFT> key to type these symbols.

8759128

Important Note to
Model lll Users

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making

any modifications to your existing software packages (applications. lan-

guages, or system utilities):

« Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

- Before converting a Radio Shack supplied Model | software package to a
Model Il format, check to see if Radio Shack provides a Model Il version
of the package. If so, you should obtain a copy of that version.

- If you're using several different software packages, press the RESET but-
ton whenever you change software.

Thank-You!

Radio Sfhaek

& A Division of Tandy Corporation

8759106

CONTENTS

N O 0 AW

Table of Contents
Jntroduction ... 1
What is an Editor/Assembler? 1
The Series-l Editor/Assembler 1
The Scope and Organization of This Manual 3
Notation Conventions 4
. Loading the Editor/Assembler, 5
Tape Systems—Level Il and Model lliBasiC 5
Tape Systems—Level | it 5
Disk Systems 6
.Usingthe Editor 7
.Usingthe Assembler i 21
. Sample Programming Sessionl 31
.The zsoInstructionSet, 45
. Appendices
A. Using the Tpsrc Utility (Disk Systems Only) 227
B. ROM and TRsSDOS /0 Subroutines 228
C. z-80 Status Indicators (Flags) 231
D. Numerical Listing of z-8o Instruction Set 234
E. Alphabetical Listing of z-8o Instruction Set 240
F. z-80 cpu Register and Architecture 246
INdEX .. 253

INTRODUCTION

Part One:

Introduction

What Is an Editor/Assembler?

An editor/assembler is a two-part program that lets you communicate with a
computer in its low-level, ‘‘native’’ language, rather than in some high level,
“‘foreign’’ language like BASIC or FORTRAN. We call this native language
‘‘machine-language.’

Using the editor, you enter the machine-language source code, consisting of a
convenient set of abbreviations and symbols. The assembler then converts or
assembles this into object code, which the Computer understands.

But I thought my TRS-80 spoke BASIC!

Well, you’re right, it does. But only because it contains a built-in BASIC
interpreter. This interpreter converts or interprets your BASIC programs into
object code, which the computer can understand.

With a Built-In Interpreter, Who Needs Machine-Language?
Well, if you—

* Enjoy learning how things — especially, computers — work;

* Want to do things faster than BAsic will allow;

* Want to make the most efficient use of your Computer’s memory;
* Want to modify the way your computer inputs and outputs data

—then you need machine-language. (Of course, there are plenty of other
reasons you may want to use it.)

The Series-1 Editor/Assembler

There are two versions of this software package, one for tape and one for disk
systems.

Tape Version

Three cassette tapes are included. One contains EDTASM, which is the Editor/
Assembler. Level II and Model III BASIC customers may load and run this tape
using BASIC’s SYSTEM command. The second tape contains SYSTEM. This
program is for Level I customers with a minimum of 16K memory. It is loaded

SERIES | EDITOR/ASSEMBLER
=== ==

with the cLOAD command, and prepares the Level I Computer to load the
EDTASM tape. The third tape contains a sample program for tape systems with at
least 32k of RAM. If you have only 16K, you can still type in and use the sample
program given in Section 5.

Disk Version

Two diskettes are included. There is one in Model I TRsDOS format and one in

Model III.

The disk version software includes three programs:

* EDTASM, the Editor/Assembler program

* SAMPLE/SRC, a source listing of all the z-8o instructions

* TPSRC, a utility to read source tapes written by the tape version of the Editor/
Assembler and two write object ‘‘SYSTEM’’ tapes.

The Series-1 Editor/Assembler is especially good for beginners of machine
language programming. Its commands and features are fairly simple, and it does
not require that you understand advanced programming concepts. On the other
hand, experienced programmers will find this editor/assembler a workable tool
for all but the most complex, large-scale applications.

Features

Editor Features

* Automatic line numbering for convenient source-code entry.

* Line renumbering command with automatic renumbering if necessary.
+ Single-letter commands plus optional parameters.

* Global search capability for changing your source text.

* Source text may be saved on tape or disk, depending on your computer
system.

* Source files on tape or disk may be loaded or ‘‘chained’’ in memory.
* Source text may be listed to the printer.

Assembler Features

* Controlled by a single-letter command with optional switches.

* Options include: wait on error, no symbol table, list to printer, and trial
assembly with no object code output.

* Supports labels up to six characters long.

* Eight pseudo-ops.

* Resides in memory with the Editor, so you can easily go back and forth
between editing and assembling.

INTRODUCTION

Scope and Organization of This Book

In this manual, we will show you how to use the Editor/Assembler. Along the
way, we’ll cover a few principles of assembly-language programming. We’ll
include a sample program. Even if you don’t understand assembly-language
programming, you should be able to try out this sample program.

In the next section (Section 2), we’ll tell you how to load the Editor/Assembler.
We’ll assume you already know how to start-up your Computer, and to get it to
the BASIC READY level (cassette systems) or to the TRSDOS READY level (disk
systems). There are separate loading instructions for:

* Tape systems— Level I
* Tape systems— Level I and Model III BASIC
* Disk systems — Models I and III TRSDOS

In Section 3, we’ll show you how to use the editor. This section is organized for
ease of use the first time through. For quick reference later on, there’s an
alphabetical summary of all editor features at the end of Section 3.

In Section 4, we describe the assembler. Here we’ll simply explain the assembly
command format and syntax. You’ll need this information when you get around
to writing your own assembly-language programs.

In Section 5, we present a sample assembly-language program. We go through
all the procedures, from entering the program to loading and executing the
assembled version.

Section 6 is a complete z-80 instruction set— the native language of your TRs-80.

This manual is written for use with Model I or III systems using either tape or
disk storage. There are a few operational differences, depending on which
system you have. In these cases, we have written separate instructions for the
differing systems. Follow those pertaining to your Computer.

What else do I need?

To write your own assembly-language programs, you’ll need more information
than is contained in this manual. If you know z-80 or another assembly
language, this manual will probably be sufficient. But if you’ve never done any
assembly-language programming, you’ll need to do some further study.

Radio Shack sells an ideal book for future TRS-80 assembly-language
programmers: TRS-80 Assembly Language Programming, by William Barden, Jr.
Its catalog number is 62-2006. Although it was written specifically for the
Model I TRs-80, most of it applies as well to the Model III.

SERIES | EDITOR/ASSEMBLER
e e ———

Notation and Special Terms Used in This Book

Notations
COMPUTER TYPE
italic type

KEY

[optional
information]

Special Terms

source code (or text)
source file
object code

object file

Indicates material that is input to or output from the
Computer. Note: All computer prompts in this manual
are given in uppercase.

Represents variable information that you provide in a
command. (i.e., file names, line numbers, etc.)

Key which you should press. These will not be visible
on the screen.

Square brackets enclose optional parts of a command.

An assembly-language source program you have loaded
from tape or disk or typed.

An assembly-language source program you have saved
on tape or disk.

The output from the assembler, i.e., coded z-80
instructions.

Object code stored on tape or disk so that it may be
loaded and executed.

LOADING THE EDITOR/ASSEMBLER

Part Two:
Loading the Editor/Assembler

Tape Systems— Level II and Model IIT BASIC

The Editor/Assembler is a machine-language program stored on tape at 500
baud. Its file name is EDTASM.

1. Turn on your Computer and press to the prompt for memory size. (In
Model III systems, first type L to the CASS? prompt.)

2. Get your recorder ready to play the Editor/Assembler tape.

3. Type SYSTEM (ENTER), then EDTASM (ENTER). The Computer will begin loading
from the tape. After a successful load (takes about 2 minutes), the 7 prompt
will reappear.

4. Type / (ENTER). The Editor/Assembler starts by displaying a heading followed
by an asterisk at the beginning of the next line. The asterisk is the prompt,
telling you the Editor/Assembler is waiting for a command.

Now skip to Section 3.

Tape Systems— Level I BASIC

Before you can load the Editor/Assembler tape, you must get your Computer
into a ‘‘system’’ mode. The SYSTEM tape does this.

1. Turn on your Computer. It should be in the READY mode.
2. Get your recorder ready to play the SYSTEM tape.

3. Type CLOAD (ENTER). The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), a "PRESS ENTER WHEN CASSETTE
IS READY" will appear on the next display line. Your Computer is now in
the system mode.

4. Prepare the recorder to play the EDTASM tape.

5. Press (ENTER). The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), the Editor/Assembler will start by
displaying a heading followed by an asterisk at the beginning of the next line.
The asterisk is the prompt, telling you the Editor/Assembler is waiting for a
command.

SERIES | EDITOR/ASSEMBLER
e e e ———

6. Volume setting may need to be adjusted for a successful load.

Now skip to Section 3.

Disk Systems

The program file name for the Editor/Assembler is EDTASM/CMD.
1. Under TRSDOS READY, type: EDTASM (ENTER).

2. The Editor/Assembler will start by displaying a heading, followed by an
asterisk on the next line. The # is the prompt, indicating the Editor/
Assembler is waiting for a command.

USING THE EDITOR

Part Three:
Using the Editor

Assuming you have just started the Editor/Assembler, it is displaying an asterisk
on the screen. This is the *‘prompt.’’ It tells you the Editor/Assembler is waiting
for a command.

The Editor consists of commands that allow you to create, edit, save and load
your source programs. We’ll divide these commands into three groups:

* Text-handling — creating and modifying the source program.

* File input/output— saving the program on disk or tape and loading it from disk
or tape.

* Miscellaneous — getting the memory status, exiting from the Editor/
Assembler.

Special Terms

Before using the commands, we need to define a few special terms used in this
section.

“‘text’’ is the information (source program) that you have entered into the
Computer. The insert command allows you to begin entering text one line at a
time, pressing (ENTER) at the end of each line. The Editor automatically numbers
each line.

‘‘text buffer’’ is the area in memory where your text is stored.

“‘current line’’ is the line most recently entered, displayed, or referenced in a
command.

‘“file’’ is the source text stored on tape or disk.

‘‘file name’’ is the name given to the file. In tape systems, the file name consists
of from one to six letters or numbers. In disk systems, the file name follows the
rules of TRSDOS file specifications (for full details, see your TRSDOS reference
manual):

filename [/ext] [.password] [:d]

“‘inc’’ or ‘‘increment’’ refers to the number which is used to compute
successive line numbers for your text. When you start the Editor, the increment
equals 10.

SERIES | EDITOR/ASSEMBLER
e s ——————

““line ref’’ or ‘‘line reference’’ is the way you specify a single line in your text.
A line reference may be any number from 0 to 65529, or any of the following
special symbols:

First line in the text buffer
. The current line
* The last line in the text buffer

‘‘line range’’ indicates a range of lines in your text file; it is a pair of line
references separated by a colon.

line-ref:line-ref

“1or’’ and ‘‘EOF’’ — refer to top of file (first line) and end of file (end of file).
The Editor will use these abbreviations in certain messages to you.

Sample Commands

These examples are simply to show the use of the special terms and notation.
The commands are explained later in detail.

P 100 “‘Print line 100’
P #:, “‘Print text from the first line to the current line.
D . ‘‘Delete the current line.”’

1 lineref.,inc ‘‘Start inserting at line, using inc as an increment between
lines. (“‘line ref.”” and ‘‘inc’’ are variables you replace with
appropriate values.)

A Few Words about Spaces

In general, spaces are not significant inside editor commands. You may use
them or omit them. Exception: No spaces inside a file name, line reference or in
the command (B)-Find.

Special Keys

ENTER To complete a command or a line of text, you must press this
key.

BREAK To cancel a command or to stop inserting text, press this key.
The line that the (BREAK) is pressed is not saved. Press (BREAK
on the line following the last line.

(=) Press this key to see the previous line of text.

= Press this key to see the next line of text.

@ This key erases the previously typed character.

™ This functions as a tab key. You will use it while inserting

text. The tab positions are spaced eight columns apart.
LEFT SHIFD (&) This erases the line you have been typing.

@ This causes a pause in a listing or printout. Press any key to
continue.

Editor Commands

We’ll cover the commands in a typical sequence in which you might use them.
For an alphabetical summary, see the end of this section.

USING THE EDITOR

Text Handling Commands

Inserting Your Text

When the asterisk is displayed, you may type in a command — not your source
text. To enter source text, you must get into the insertion mode.

First, to get your Computer ‘‘in step’” with our examples, type D #:* (ENTER).
That erases any text that you might already have entered into the text buffer.

Now we’ll go into the insertion mode. Type I (ENTER). The Computer will
display 00100. All we do is type in text for line 100 and press (ENTER). The
Computer will automatically provide the next line number.

@010@ 3§ ANY CHARACTERS FOLLOWING A SEMI-COLON (35) IS A
COMMENT (ENTER
00110

We may continue like this until we finish entering the text. Remember to press
ENTER) at the end of each line.

@@11@® § PRESS -* AT THE START OF THE NEXT LINE (ENTER
po1z0o RET iA VERY SHORT PROGRAM (ENTER
po130

In line 120, we pressed tab (B) once at the beginning of the line, and once after
RET. Tabs are very important in source programs; they are used instead of spaces
to separate the standard fields in an assembly-language program. (We’ll explain
further in part 4.)

That’s all the text we want to type in for now, so press (BREAK). The asterisk will
reappear on the next line.

Displaying Your Text
To see the text, use the Print command. For example: P #:* (ENTER). This tells
the Computer to display all the lines in the text buffer. To see a single line,

specify that line, as in: P 700 (ENTER). Another way to display lines one at a time
is with (@) (previous line) and (&) (next line).

If you omit a line reference, the Computer will display a screenful of lines,
starting at the current line. This is a good way to look at a large text file, one
screenful at a time. Simply press P (ENTER) to see the next screenful.

Note: If the total file is to be displayed you may execute T (ENTER) prior to Print
command to insure that current line is TOF.

Getting a Hard-Copy of the Source Program

To output to a line printer instead of to the display, substitute ‘‘H’’ (hard copy)
for “‘p”’. For example, the command H #:* prints out the entire source program.
If printer is not ready press (BREAK) to return to command line.

(For instructions on getting hard copy of an assembled program, see Section 4.)

SERIES | EDITOR/ASSEMBLER
e = e

Adding Lines between Existing Lines

Suppose you want to add a line between lines 100 and 110. Use the Insert
command, but specify a starting line number between 100 and 110:

I 185

P@1@5 STHIS LINE IS ADDED (ENTER
20115 (BREAK

*

When you pressed (ENTER) for line 105, the Computer used the current increment
(10) to generate line 115, which will not be between 100 and 110. To insert more
than one line between any two lines, you can specify an increment of 1.

For example,

I 10541
00106

Line 105 is already in use, so the Computer gives you the next number, using an
increment of 1:

ge1@6 SWE'LL JUST TYPE IN A FEW LINES

@01@7 SNOTICE THAT THE INCREMENT OF 1 IS STILL IN USE
P0108 SWHAT WILL HAPPEN WHEN WE REACH LINE 1107

P21@9 STHAT LINE IS ALREADY IN USE . . . (ENTER

@gi11@ 5, » . BUT EDTASM GIVES YOU THAT NUMBER ANYWAY. (ENTER
pe11l

A line “‘collision’’ was about to occur when you entered line 110, since that
number was already in use. So the Editor automatically renumbered all lines.

To begin inserting lines at the end of the file, use the Bottom command,
B (ENTER). This makes the current line the last line.

Changing a Line in Your Text

To make a change within a line of text, use the Edit command. This puts you in
a special intra-line edit mode in which several useful functions are available. To
begin editing a line, type E followed by the line number (or line symbol *‘#’,
¢ex2 ¢« 27y and press (ENTER). The Computer will display the line number
followed by the cursor (blinking block or underline). This is your ‘‘working
copy’’ of the line. Changes you make will not take effect until you exit from the
intra-line edit mode.

To exit from the intra-line edit mode, press (ENTER) or E (ENTER) and changes are
saved. Press (BREAK) or 0 and the line remains in its original form.

10

USING THE EDITOR

Here are the functions available in the intra-line edit mode:

n (SPACEBAR

®

n@®c

n @
n® c

n®cl...cn

®

@ newtext

®
®

ENTER) or ()

BREAK) or @

Lists the line in its current form and starts a new working
copy on the next line.

(Spacebar) Moves the cursor forward n spaces, showing the
next n characters in the line. If n is omitted, 1 is used.

Moves cursor back one space in the line, but does not erase
the character from the working copy.

(Search) Positions the cursor at the nth occurrence of
character c, counting from the current cursor position. If n
is omitted, positions to the first occurrence after the current
position.

Deletes the next n characters. If #n is omitted, 1 is used.

(Kill) Deletes all characters up to the nth occurrence of
character c. If n is omitted, deletes up to the first
occurrence.

Changes the next n characters to characters c/ . . . cn.

(Again) Cancels all changes made and lets you edit the line
again.

Insert newtext. Insertion will continue until you press

(@) or (ENTER). While inserting, the (4 key will erase
a character, and the will insert a space. You must
exit from this insertion function before you can use any of
the other editing functions.

(Extend) Begin inserting at the end of the line.

(Hack) Delete remainder of the line and begin inserting at
the current position.

Exits to the * command level. The changes you made will
take effect.

(Quit) Exits to the * command level. The changes you made
will be canceled.

The best way to learn to use these edit functions is to experiment with them. For
example, type E to start editing the current line. The Computer will
display the line number. Press () to see the line in its current form and start a
new working copy. Now try each of the commands listed above.

Remember: To exit from the intra-line editor at any time, press (ENTER). To stop
the insertion function but continue editing, press (SHIFD ().

11

SERIES | EDITOR/ASSEMBLER
S

Replacing a Line

You cannot use the Insert command to replace a line, because the Computer will
always renumber the lines in case of a line collision. To replace a line, type R
followed by the line reference and press (ENTER).

For example, to replace line 100, type: k 100 (ENTER). The Computer will
display 00100. Go ahead and type in the new text for this line. When you press
(ENTER), the Computer will act just as it does in the line insertion mode: it will
compute a new line number using the current increment and renumbering the
lines if necessary to avoid a collision. From this point on, you are inserting, not
replacing. Only line 100 is replaced.

Deleting Lines

To delete a range of lines, type D line range. For example,

D 100 Deletes line 100

D . Deletes the current line

D 100:120 Deletes all lines from 100-120
D #:% Deletes all lines (first to last)

Finding a String within Your Text

The Find command searches through your text for any one word string you
specify, and tells you which lines contain the text.

Suppose you have a large text file in memory, and you want to change each
occurrence of “‘LBL’’ to ‘‘LABEL.” The Find command will identify each line
that contains ‘‘LBL.” Simply type: T to position the current line to the
beginning of the text, then type FLBL (ENTER). The Computer will search for the
string of characters immediately following the F and ending with the carriage

return ((ENTER)).

The editor will print the line number of the first occurrence of LBL. That line
becomes the current line. You may begin editing it by typing E (ENTER).

To find subsequent occurrences of LBL, simply type F (ENTER). The editor
continues searching at the current position and remembers the string being
searched.

Remember: (1) Type in the search string immediately after the ‘‘F’’ with no
spaces, unless the search string starts with spaces. (2) The Find command
begins searching at the current line, so set the current line to TOF first if you
want to search through the entire text.

Renumbering Your Text

After inserting lines (and having them automatically renumbered), you may
want to renumber them ‘‘manually.”” The Number command does this. Type N
start-line, increment (ENTER). Start-line will be the lowest-numbered line in the
renumbered program.

12

USING THE EDITOR

For example, the command: N 1000,10 renumbers the text 1000,
1010, 1020, etc.

After renumbering, the current line is the last line in the file, and the increment
is what you specified in the N command.

If no start line is typed, the renumbering will begin with the current line. If no
increment is specified, 10 is used.
Source File Input/Output Commands

In this section, we’ll show how to save a source program and then reload it.
(For instructions on outputting and loading an object file, see Section 4.)

There are three general groups of editor /0 commands:

* Writing the source program to tape or disk
* Loading the source program from tape or disk
* Printing the source program on the display or on a line printer. We’ve already

described these commands (H and P).
Saving the Source Program

Once you have typed in and edited a source program, you should save it on tape
or disk. That way, if you ever need to modify the source program, you won’t
have to retype it; you can simply load it and make changes.

The tape version of Editor/Assembler always assumes you want tape /0, and the
disk version assumes you want disk 10. (Disk systems may load source tapes
via the TAPESRC utility, described later in the appendix.)

Note to Model III Customers: All tape 1/0 is done at 500 baud, regardless of the
cassette baud rate you selected when you started up the Computer.

Tape Systems
1. Using a blank cassette tape, put your recorder into the record mode.

2. Type W file ENTER). Use a file name from one to six characters. You may omit
the file name, in which case the tape file will be named NONAME.

Example:
W MOUE (ENTER

3. The Editor/Assembler will prompt you to get the cassette recorder ready. Be
sure it’s in the record mode, then press (ENTER). The Editor/Assembler will
write the text onto the tape.

4. After writing the tape, the Editor/Assembler will return to the command
mode (asterisk).

5. Make at least one additional tape copy of the program.

13

SERIES | EDITOR/ASSEMBLER

6. Remove the tape from the recorder and label it. Be sure to identify it as a
source tape.

Disk Systems

1. Type W file (ENTER). For file, use a standard TRSDOS file name with an optional
password and drive specification. The Editor will automatically add the
extension /SRC to the file name. To override this, include a different extension
in the file specification.
You may omit the file name, in which case the file will be called NONAME/
SRC.
Example:
W MOVE (ENTER
writes the source program into the file MOVE/SRC.

2. After writing out the file, the Editor will return to the command mode

(asterisk).

Loading a Source Program

Tape Systems

1. Prepare the recorder to play the source tape.

2. Type L file (ENTER). For file, substitute the correct file name. If there are
several files on the tape, the Editor will search through them until it reaches
the one you named. You may omit the file name, in which case the first file
on the tape will be loaded.

Before the Editor starts loading from the tape, it will prompt you to get the
cassette recorder ready. Press when ready.

3. After loading the source program, the Editor will return to the command
mode (asterisk).

Disk Systems

1. Type L file ENTER). For file, specify the file in standard TRSDOS form. If the

14

specification you give does not include an extension, the Editor will
automatically use the extension /SRC.

You may omit the file specification. The Editor will then attempt to load a file
named NONAME/SRC.

USING THE EDITOR

(If you already have a source program in the text buffer, the Editor will
warn you:

TEXT IN BUFFER. CHAIN FILES?

If you want to add the disk file onto the end of the current text in memory,
type Y (ENTER). This will chain the new file onto the end of the file in memory
and automatically renumbers the total file. If you don’t want to ‘‘chain’’ the
files, but wish to erase the current file and load the new one, type N (ENTER).)

2. After loading the file, the Editor will return to the command mode (asterisk).

Miscellaneous Commands

Determining the Memory Status

To find out the size of the current source program and the amount of free
memory, type M (ENTER). The status will be shown in bytes.

Exiting from the Editor/Assembler

The quit command (@ (ENTER)) takes you out of the Editor/Assembler and back
to TRSDOS or BASIC (if you are in a level II computer). Before using this
command, be sure to save your source program, if desired, because you won’t
be able to recover it simply by restarting the Editor/Assembler.

15

SERIES | EDITOR/ASSEMBLER

Editor Error and Warning Messages

BAD PARAMETER(S) This indicates that you gave the
editor an invalid command.
Check the syntax used, and the
values of parameters given (they
may be out of range).

BUFFER FULL The area assigned to text
storage is full. You may be able
to split the source text into two
modules.

LINE NUMBER TO0O LARGE | During the generation of new line
numbers (insertion or line
renumbering) a line number
greater than 65529 was needed.
This is too large. Use a smaller
line number increment.

NO SUCH LINE A reference was made to an
unused line number.

NO TEXT IN BUFFER All commands except load,
insert, memory-status, and quit
require some text to be in the
buffer.

STRING NOT FOUND You issued a find command and
the editor could not locate the
string you specified. Be sure you
had the current line set properly
(find begins searching at the
current line number).

16

USING THE EDITOR
e

Editor/Assembler Alphabetical Summary

Special Keys

ENTER Executes the current command.

BREA Cancels or interrupts a command.

@ Erases the last character typed.

(=) Displays the previous text line.

=) Displays the next text line.

SHIFD (O Erases the entire line. (Use left
shift key only)

™ Tabs forward eight spaces.

Pauses execution of a command;
press again to continue.

SHIFTD (=) Escapes from the character
insertion command in the edit
mode. (Use left shift key only)

Symbols and Abbreviations

3k

*

line ref

line range

inc

First line in text
Last line in text
Current line in text

A single line number or line symbol
(#, *,or.).

A pair of line refs separated by a
colon (line ref : line ref)

An increment between lines.

17

SERIES | EDITOR/ASSEMBLER

Commands

A [file] [switch. . .]

B
D [line ref or line range]

E [line ref]
Subcommands
n
C))
n®c
nD®
n®c
n®©ct...cn

®

@ newtext

®
®

ENTER) or (B)

BREAK) or (@
F [text string]

H [line range]
1 [line ref] [,inc]
L [file]

M

N [line ref] [,inc]

P [line range]

Assemble. Switches are: LP (line
printer, We (wait on error), NL (N0
listing), Ns (no symbol table), NO
(no object code output).

List bottom (last) line of text.
Delete line(s).
Edit line ref.

Lists. working copy of line
Advance n spaces.

Backspace 1 space.

Search for nth occurrence of c.
Delete next n characters.

Kill up to nth occurrence of c.
Change next n characters to
cl...cn.

Cancel changes and start again.
Insert newtext. Press or
(@) to quit.

Extend line.

Hack rest of line and begin
inserting.

Exits to the command level;
changes take effect.

Cancels changes and quits editing.

Find the text string immediately
following the letter “F”; or find the
current text string. (No space
between (B) and text string).

List lines on the printer. If printer
not ready use (BREAK) to recover.

Insert at line ref using inc. If no
line ref has been determined 100
is used.

Load a source file.
Display memory status.
Renumber text.

List lines on the display.

18

USING THE EDITOR

R [line ref]

;
W [file]

Quit Editor/Assembiler; return to
TRSDOS or BASIC (Level II).

Replace line and continue in the
line insertion mode.

List top (first) line of text.

Write a source file.

19

USING THE ASSEMBLER

Part Four:

Using the Assembler

In Section 3, we showed you how to type in, edit, and save a source program.
For a source program, we used an arbitrarily chosen text.

Now we are ready to discuss the assembler — the software that converts your
source text into object code that can be understood by the TRS-80’s Z-80
microprocessor, and writes this object code to a tape or disk file. We’ll break
this section up into three parts:

A. The Assemble command — syntax, options, file output, error conditions, etc.

B. Assembler language — definitions, syntax, input/output format, etc.

If you’re new to assembly language, you don’t have to read all this now. You
may skip to Section 5, which presents a sample programming session. This will
give you hands-on experience with the Editor/Assembler. Then, when you come
back to this section, you’ll have a better idea of what it’s all about . . .

The Assemble Command

You enter the Assemble command at the command level (asterisk). It consists
of the abbreviation ‘‘A’’ followed by a space and an optional file name and
optional switches. (We call them ‘‘switches’’ because they turn various
functions on and off.)

There are various combinations of spaces and commas that will work in the
assemble command. For simplicity, we’ll stick with one workable set of rules
for command syntax.

A [file] [,switch . . .]

The file name and switch are optional. (If no file name is used, you must still
type in a space after the ‘‘A.’) Every switch used must be preceded by a
comma. Spaces before or after the file are acceptable and have no effect.

A source program must be originated in RAM or loaded into RAM before it can be
assembled.

21

SERIES | EDITOR/ASSEMBLER

For example:
A ZAP:NS:NL sWE (ENTER

“‘zAP’’ is the file name; ‘“NS’’, °‘NL’’ and ‘‘WE’’ are switches. The commas are
required. The meaning of this and the following commands will be explained in
the following pages.

A sNOWE +NS (ENTER
No file name is given.
As another example:

A (SPACEBAR) (ENTER)

No file name or switches are specified.

File Name

The file name you specify will be assigned to the tape or disk object file. If you
omit a file name, ‘‘NONAME’’ will be used. (For further details, see File Output
later in this section.)

Switches

If you don’t specify any switches in your assemble command, the Assembler

will do the following:

* Print the assembly listing on the screen

* Print error and warning messages in the listing without pausing

* Print a symbol table after the listing is completed

* Output the object code to tape or disk, using the file name you specified (or
‘‘NONAME’’ if you omitted one)

Here are the switches available. You may use as many as you want in any order.
Remember to put a comma before each switch used.

LP (Line printer) Output listing, error messages, and
symbol table to the line printer, not to the display.

WE (Wait on error) Pause after each error message;
operator presses to continue.

NL (No listing) Don’t output an assembly listing.

NS (No symbol table) Don’t output a symbol table.

NO (No output) Don’t output any object code.

22

USING THE ASSEMBLER

File Output—Disk Systems

If you do not specify the NO switch, and if no terminal errors occur during the
assembly, the Assembler will write the object code to the disk file you specify.

Use a standard TRsDOS file name with an optional password and drive
specification. The Assembler will automatically add the extension ‘‘/cMD’’ to
the file name. To override this, include a different extension in the file
specification.

If you omit a file specification, the Assembler will use ‘‘NONAME/CMD’’ as the
object file.

Examples:

A ZAP sNOSWE

Waits on errors, does not output object code.
A ZAP4LP

Outputs the assembly listing to the printer, outputs object code to ZAP/CMD.
Use of Object Files

Every object file is stored in a special format that allows it to be loaded and
executed by TRSDOS. An object file cannot be loaded by the Editor/Assembler.
(Since it is no longer in text form, the Editor/Assembler can’t do anything
with it.)

To load and execute an object file program while you are in the TRSDOS READY
mode, type the file name and press (ENTER). If the extension is ‘‘/CMD,’ you
don’t need to include it in the file name.

To load an object file and return to TRSDOS READY, type LOAD filename (ENTER).
In this case, you must include the extension even if it is ‘‘/cMD.”’ For further
details on the use of object files, see Section 5.

Now skip ahead to ‘‘Assembler Error Messages.’

File Output—Tape Systems
Note to Model Il Customers: All tape output is done at 500 baud.

If you do not specify the ‘‘NO’’ switch, and if no terminal errors occur, the
Assembler will write the object code to cassette tape, using the file name you
specify. The file name may be from one to six characters long. If you omit one,
‘‘NONAME’” will be used.

Before writing the tape, the Assembler will prompt you to get the cassette ready.
Using a blank tape, prepare the recorder to record; when ready, press (ENTER).
The Assembler will then write the tape.

Make at least two copies of each object file. Remove the cassette and label it as
an ‘‘object’’ tape.

23

SERIES | EDITOR/ASSEMBLER

Use of Object Tapes

Object tapes are stored in a special format for loading via the sYSTEM command.
(Level I systems must first load the SYSTEM tape; then the object tape.) An
object file cannot be loaded by the Editor/Assembler. (Since it is no longer in
text form, the Editor/Assembler can’t do anything with it.)

To load an object tape while in BASIC, type: SYSTEM then filename
. After the tape has been loaded, you may press to return to

BASIC, or / address to begin execution at the specified address. If you
type / (ENTER), omitting the address, an address specified on the tape itself will
be used. (For details, see the Section 5.)

Assembler Error Messages
Four kinds of errors may occur after you enter an assemble command.

1. Command errors. If there is an error in your command, no assembly will be
attempted. The Assembler will display the message ‘‘BAD PARAMETER(S)’

2. Terminal errors. During assembly, an unrecoverable error occurred. The
assembly is cancelled.

The only terminal error is ‘‘SYMBOL TABLE OVERFLOW.’’ This occurs when
there is not enough memory to handle the symbol tables required for
assembly. Use a machine with more memory (if possible), or break the
program up into modules and assemble them separately.

3. Fatal errors. One of the source lines contained an error. No object code is
generated for the offending line, but the assembly continues. Here are the
terminal errors:

BAD LABEL Invalid sequence of
characters were used
as a label. (See
“labels’’)

EXPRESSION ERROR An invalid expression
was used as an
operand. (See
“expressions.’)

ILLEGAL ADDRESSING MODE One of the operands
used is illegal with the
specified Z-80
instruction.

ILLEGAL OPCODE Unrecognizable
characters were used
in the opcode
(mnemonic) field.

MISSING INFORMATION Mnemonic or
operands are missing.

24

USING THE ASSEMBLER

4. Warnings. A probable error occurred, but the assembler will generate object
for the offending line anyway. The code may not be what the programmer
intended. Warning messages are:

BRANCH 0OUT OF RANGE Relative branch
instruction outside of
the range — 126 to
+ 129 bytes.
Instruction is
assembled to branch
to itself.

FIELD OVERFLOMW An operand (number
or expression) is out
of range for the
specified instruction.
The operand is set
equal to zero.

MULTIPALLY DEFINED SYMBOL A label has been used
to identify two different
places or represent
two different values.
All but the first
definition will be

ignored.

MULTIPLE DEFINITION A duplicate operand is
used.

NGO END STATEMENT No end statement was
found.

UNDEFINED SYMBOL The operand field

contains a symbol
which has not been
defined. A value of 0
is used for this
symbol.

Assembly Language

In the first part of Section 4, we discussed the use of the assemble command. In
this part, we’ll discuss Assembly as a programming language.

An assembly program is made up of source statements. Each source statement
consists of up to four fields. A ‘‘field’’ is a range of columns on the display.
We’ll agree to consider column 1 to be the first column of source text. Column 1

25

SERIES | EDITOR/ASSEMBLER

is the first column after a space that follows the line number. Source statements
are written using the I (insert) command.

Field Column Range
Label 1-6
Mnemonic 9-15
Operand(s) 17-31
Comment May begin anywhere but must be
preceeded by a semi-colon (;).

Labels are used to identify individual source statements. A label may be from
one to six characters. It must start with an alphabetical character. For example:

MOVE
LOOP
LOOP1
CLS
T1

are all valid labels. Labels must start in column 1.

Mnemonics are the abbreviations used to represent z-80 operations, for example:

LD Load
DEC Decrement
RET Return

Mnemonics are also called *‘operation codes’ or ‘‘opcodes.’” Mnemonics must
start in column 9.

Operands are the values used by certain assembler statements. An operand may
be a z-80 register or /O port, or a one- or two-byte value. For example:

LD A3

tells the z-80 to load into register A the number 3. ‘A’ and ‘‘3’’ are operands.
Symbols may be used in place of actual numbers. For example:

LD HL sVIDEO

tells the z-80 to load into register HL the value for VIDEO (defined elsewhere in the
program). The first operand must start in column 17.

Comments document the program. They are ignored by the assembler. A
comment may begin in any column of a source statement, subject to the
following limitations: All comments start with a semi-colon, which tells the
assembler to ignore the rest of the line.

When you type in a source program, use a tab ((#) key) to separate the fields,
not spaces. This method is faster and saves memory. Furthermore, the tab
settings correspond to the first columns in each field.

26

USING THE ASSEMBLER

Example:

20100 i THIS IS A SAMPLE PROGRAM

ee11o j

00120 iLABEL MNEM. OPERAND(S) COMMENT

20130 ORG 32700 iFOR 16K MACHINES

e014@ BEGIN LD HL »3C@0H i (HL)Y=VIDEO RAM)

20150 LD As'x’

20160 LD (HL) +A SWRITE ASTERISK TO WIDEO
ee170 RET IRETURN TO CALLER

p0180 END JEND OF SOURCE PROGRAM

Lines 100-120 are comments. Lines 130-170 consists of assembly-language
statements followed in most cases by comments.

There should be one tab character at the end of each field. Spaces (entered via
SPACEBAR) should only be used inside comments and inside character constants.

Assembler Statements

There are three kinds of assembler statements:

1.

Pseudo Operations. Sometimes called ‘‘pseudo ops,’ these statements are not
translated into z-80 object code. They control various functions of the
assembler itself, such as defining labels, reserving memory, and setting the
programs origination address. Pseudo ops must begin in column 9.

. Commands. These are also directed at the assembler. The Series I Assembler

has two assembler commands, *LIST ON and *LIST OFF (described later). These
commands must begin in column 1.

. z-80 Operations. These consist of a mnemonic (sometimes called an operation

code or ‘‘opcode’’) sometimes followed by one, two or no operands. They
are translated directly into object code. Some z-80 instructions translate into
one byte of object code; others may translate into two, three, or four bytes.
The opcode must begin in column 9. Tabbing one time moves to column 9.

Special Terms and Abbreviations for Operands

nnnn or nn Represents a number. For one-byte numbers, nn is used. For

two-byte numbers, nnnn is used. (Two-byte numbers are
assembled into two’s complement binary values. First comes the
least significant byte (LsB), then the most significant byte
(MsB)). A number may be any of these:

Decimal number

Hexadecimal number nnnnH or nnH. The suffix ‘‘H’’ indicates
hexadecimal; if the number starts with A-F, prefix a 0 to it, as
in OFOH.

XP 2] IXP Rl

Octal number: nnnnnQ or nnno. The suffix ‘‘Q”’ or ‘0’
indicates octal.

27

SERIES | EDITOR/ASSEMBLER
== e

Current address, ‘s’ (The address in the program counter will
be used in place of the $).

Character constant: Any character inside single quotes. The
constant is converted into its Asci character code. For example,
‘A’ 1s converted into 65.

Any numeric expression (see ‘‘Expressions’’).
Pseudo-Operations
ORG nnnn

(Originate) This sets the address reference counter. It determines where
subsequent z-80 code and data will reside in memory. If no ORG statement is
given in your source program, the address reference counter will be set to 0.

ORG should be used before any z-80 instructions or data storage pseudo ops. It
may be repeated. The programs in this manual are orRGed at decimal 32512
(hexadecimal 7F00). All subsequent ORG's are absolute.

symbol EQU nnnn or nn

(Equate) This assigns the value nnnn to the symbol. Each time the symbol is
used as an operand in the source program, the assembler will replace it with
nnnn. The EQU statement may appear anywhere in the program. A particular
symbol may be equated only once.

label DEFL nnnn

(Define label) This assigns a temporary value nnnn to the specified label. The
value may be changed as often as required within the source program.

END nnnn

This indicates the end of a source program. If there are any following lines in
the program, they will be ignored. The address nnnn sets the entry point to the
program. If omitted, the entry to TRSDOS (disk systems) or BASIC (cassette
systems) will be used. For details, see section 5.

[label] DEFB nn

This defines the contents of the current address to be nn. This pseudo op allows
you to initialize the contents of one-byte storage locations used by the program.
nn may be a one-byte value or a character string enclosed in single-quotes.

[labell] DEFW nnnn

This defines the contents of the current two-byte address to be nnnn. This
pseudo op allows you to initialize the contents of two-byte storage locations
used by the program.

[label] DEFS nn

(Define storage) This reserves nn bytes of memory, starting at the current
address. (The reference address will be incremented by nn before the next

28

USING THE ASSEMBLER

source statement is assembled.) This pseudo op allows you to reserve space for
buffers, parameters, etc.

[label] DEFM string

(Define message) This stores the specified string of characters, beginning at the
current address.

Assembler Commands

The *LIST command allows you to suppress parts of a source listing. Error
messages and the offending source statements will still be listed. These
commands are very useful when you are debugging long programs, because the
parts of the program already corrected do not need to be listed. You may also
want to use them to suppress the listing of long tables of data contained in
programs (€.g., DEFM strings).

The asterisk (*) portion of the *LIST ON and *LIST OFF command must be in
column one.

*LIST OFF

Has no effect on the assembly, but turns off the assembly listing.

*LIST ON

Has no effect on the assembly, but turns the assembly on again (after *LIST OFF).
Using Expressions as Operands

The assembler will accept an expression in place of any numeric operand.
Expressions include symbols, numeric or string constants, and combinations
of these using the arithmetic and logical operators listed below.
+ and — Addition and subtraction. Example:

LD HL +VID+80@H

- Negation. Example:
LD HL»VID-1
LD HLs-1 (@ understood)
& Logical AND. Example:
LD A (HL)&BFH
< Shift left or right. This operator shifts a value right or left by a
specified number of bits, in this format:
value < nn

If nn is negative, the value is shifted to the right and zeroes fill on
the left. If nn is positive, the value is shifted to the left and zeroes
fill on the right. Example:

LD AUALL2

29

SERIES | EDITOR/ASSEMBLER
= e e

Shifts the VAL two bits to the left and fills with zeroes on the
right.

The Z-80 Instruction Set

Section 6 is a full z-8o instruction set. The z-8o registers and flags available for
the programmer’s use and a description of the z-80 architecture is in Appendix F.

30

SAMPLE PROGRAMMING SESSION

Part Five:

Sample Programming Session

In this section, we’ll take you step by step through the Series I Editor/
Assembler. Our goal will be to create a machine-language subroutine that may
be called from a BASIC program or the disk operating system of your computer.

The machine-language we’ll present is simple but useful. Given a source
address, a destination address, and a length-value, it will copy a block of
memory into another area of memory. Doing this with normal BASIC statements
is slow. Doing this with machine-language is almost instantaneous.

Creating the Source Program
Start the Editor/Assembler as explained in Section 2. Then type I to get
into the line insertion mode. Now type in the following program, pressing

at the end of each line. (Remember to use TAB to space from the end of
one field to the start of the next field.)

P010@ 3 SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA

@@11@ 3 ON ENTRY: (SRC) = SOURCE ADDRESS

0120 3 (DST) = DESTINATION ADDRESS

PR130 3 (LEN) = NUMBER OF BYTES TO MOVE

20140 ORG 325812

00150 MOVE LD HL s (SRC) i SOURCE ADDR.
20160 LD DE,(DST) i DESTINATION ADDR.
00170 LD BC»(LEN) i LENGTH

00180 LDIR

p0190 RET

22208 SRC DEFMW (]

02218 DST DEFW i

00220 LEN DEFHW 2

P0230 END MOVE

31

SERIES | EDITOR/ASSEMBLER

Press BREAK) to quit inserting. Then type P #:* (ENTER) to see the entire source
program. If there are any errors, use the edit mode (E command) to correct
the line.

If you have a printer, you may get a hard copy of the text by typing H #:*
(ENTER).

Now we are ready to make a copy of the source program. We’ll call it ‘*‘MOVE.”’

Saving/Loading a Source Program (Tape Systems)

Using a blank cassette tape, get the recorder ready to record. Type W MOVE
(ENTER). Press again whea you are ready to record. After the tape is
recorded, the Editor/Assembler will return in the command mode (asterisk). It’s
a good idea to make a second tape copy.

Now try reloading the program. Delete the text from memory by typing D #:*
(ENTER). Then rewind the recorder, prepare it to play, and type L MOVE (ENTER).
Press again when the recorder is ready to play. After the program has
been loaded, the Editor will return in the command mode. Now skip to the
paragraph titled, Trial Assembly.

Saving/Loading a Source Program (Disk Systems)

Type W MOVE (ENTER). After the file is written, the Editor/Assembler will return
in the command mode (asterisk). The file will be called MOVE/SRC.

Now try reloading the source program. Delete the text from memory by typing
D #:* (ENTER). Then type L MOVE (ENTER). After the source program has been
loaded, the Editor will return to the command mode, listing text and memory
contents.

Trial Assembly

Now we are ready to see if the program can be assembled without errors. We’ll
use the NO (no output) and WE (wait on errors) switches for this purpose.

The source program should be in memory. Type A N0 ;WE (ENTER). The Editor/
Assembler will put the assembly listing on the screen. If any errors are found,
the listing will be paused. An error message will appear directly above the
offending line. Press any key to continue.

If any assembly errors were found, use the edit mode to correct them, and try
another trial assembly.

If you have a printer, you may request a hard copy of the assembly listing. This
will be preferable to the display listing, since most listings require more than 64
columns per line. To output to the printer, type: A +NQ:LP (ENTER.

Figure 1 shows the assembly listing generated by our sample program. We’ve
added callouts to identify the various fields in the listing.

32

SAMPLE PROGRAMMING SESSION

Memory Object Line
Loc. Code Number Label Mnemonic Operand(s)
pO100 ; SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
20110 3 ON ENTRY, (SRC) = SOURCE ADDRESS
PO1Z0 ; (DST) = DESTINATION ADDRESS
P0130 H (LEN) = NUMBER OF BYTES TO MOVE
7F00 pO140 ORG 32512
7F00 2ADE7F 0150 MOVE LD HL + (SRC) i SOURCE ADDR.
7F0B3 EDSB10@7F PO1GO LD DE +(DST) ; DESTINATION A
7F07 EDAB127F 00170 LD BC s (LEN) i LENGTH
7F0B EDBO 00180 LDIR
7F@BD o] 00190 RET
7FQE 0000 pOZ00 SRC DEFMW]
7F10 0000 pBZ10 DST DEFMW]
7F12 000 POZZ0 LEN DEFMW]
7F00 0230 END MOVE
00000 Total Errors
LEN 7F12
DST 7F10
SRC 7FDE
MOVE 7F00
Symbol Table

Figure 1. Sample Assembly Listing

Here are a few comments on the source program (line references are to column
3 of the listing):

Line 140 sets the origination address of the program. We’ve chosen an address
near the top of memory in a 16k RAM system. If you change this address, be sure
to make the appropriate changes in the BASIC calling program (presented later).

Line 230 ends the program. Since we gave an operand (MOVE), the Editor/
Assembler will store the value of MOVE as the entry address to the program. If
we had omitted an operand here, the entry address to the program would have
been set to address 0000H. (More later.)

Object Code Output

After confirming that the program can be assembled without errors, we are
ready to create the object file on tape or disk. We’ll use an assemble command
that outputs object code only.

33

SERIES | EDITOR/ASSEMBLER
m— == e

Tape Systems

Using a blank tape, prepare the recorder to record. Type A MOUVE sNL :NS (ENTER).
Press (ENTER) again when ready. The Editor/Assembler will write out the object
tape. It’s a good idea to repeat this process to get a second tape copy.

Disk Systems

Type A MOVE,NL +NS (ENTER). The Editor/Assembler will create an object file
named MOVE/CMD.

Running the Sample Program

Our sample program, MOVE, may be executed as a BASIC subroutine or as an
independent program.

First, we’ll try it as a BASIC subroutine.

Tape Systems (Level II and Mod III only — will not execute in a
Level I machine)

Start BASIC and answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BAsIC from using the area where the subroutine will reside.

Now load the subroutine:

Type sysTEM (ENTER). Prepare the recorder to play the object tape, then type
MOVE (ENTER). After the program has been loaded, the #7 will return. Press
BREAK) to return to BASIC. Now type in the BASIC program given in Listing #1.
(Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copies will be the
length value.

Disk Systems

Start TRSDOS. Under TRSDOS READY, load the subroutine by typing LOAD
MOVE/CMD.

Start BASIC. Answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BAsIC from using the memory where MOVE resides.
Now type in the program given in Listing 2. (Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copied will be the
length value.

34

SAMPLE PROGRAMMING SESSION

Executing a Machine-Language Program Directly

MOVE is a subroutine called from a BASIC program. However, you can also
execute machine-language programs created with the Editor/Assembler.

Disk Systems

Under TRSDOS READY, type in the program name and press (ENTER). The program
will be loaded and executed, starting at the address specified in the END
statement of the original source listing (e.g., line 230 of our sample program).
Don’t use our sample program this way; it was designed to be called from
BASIC only.

Tape Systems (Level I and Mod III BASIC)

Load the program using the SYSTEM command, as explained previously. After
the program has been loaded from tape, the *7 will reappear. Don’t press
(ENTER). Press / instead. The Computer will begin executing the program
at the address specified in the END statement of the original source listing (e.g.,
line 230 of our sample program).

Alternatively, you may type / address (ENTER) tc override this entry address.

(Don’t try this with MOVE; that subroutine should only be called from a BASIC
program like the one we presented.)

Tape Systems (Level I users)

You may load the program using the Level I ‘System Loader’ tape that came
with your EDTASM. This is accomplished by typing CLOAD. A prompt
‘‘CASSETTE READY’’ will appear on the screen. When the tape is ready to load
press (ENTER). Your object program will load at this time. The Computer will
begin executing your program at the address specified in the END statement.

You may write your own ‘‘System Loader’” and put it at the beginning of each
Level I program. (Refer to Appendix B) Tapes loaded into Level I with the
“‘System Loader’” must be OrRGed above 4500H and be created by EDTASM.

1@ POKE 1B6526+0: POKE 1B3527,127

2@ SRC = 323526

30 DST = 32328

40 LN = 32530

3@ CLS

6@ INPUT "SOURCE": §

7@ INPUT "DESTINATION"3 D

8@ INPUT "LEN"3F L

9@ IF (D«<13360) OR (D»16383) THEN 230
188 YL = §: MM = SRC: GOSUB 190

110 IF (D<153B0) OR (D:>1B383) THEN 230
120 IF D+L * 16384 THEN 240

138 YL = D: MM = DET: GOSUB 190

148 VL L: MM = LN: GOSUB 190

35

SERIES | EDITOR/ASSEMBLER

150 X = USR(®)

160 IF INKEY$="" THEN 1G@

170 GOTO S50

180 ‘BREAK NUMBER INTO MGSB., LGB

18@ MS% = VL/256: L8% = UL - (MS% * Z25B6)

208 'PUT DATA INTO MEMORY

210 POKE MM, LS%: POKE MM+1, MSZ

220 RETURN

230 PRINT "INVALID DESTINATION": STOP

2408 PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #1.

1@ DEFUSR = RH7FQO

20 SRC = BH7FBQE

3@ DST = BH7F10

48 LN = BH7F12

30 CLS

6@ INPUT "SOURCE"3F §

70 INPUT "DESTINATION"3 D

8@ INPUT "LEN"3§ L

9@ IF (D«<13360) OR (D»16383) THEN Z30
1@ YL = 8: MM= SRC: GOSUB 190

11@ IF (D<15360) OR (D:>16383) THEN 230
120 IF D+L » 16384 THEN 240

138 VL = D: MM = DST: GOSUB 19@

148 VL = L: MM = LN: GOSUB 190

150 X = USR(®)

160 IF INKEY4$="" THEN 16O

170 GOTO 350

180 ‘BREAK NUMBER INTO M5B, LGB

190 M8% = YL/256: LS5% = VUL - (MB% * 256)
20@ ‘PUT DATA INTO MEMORY

210 POKE MM, LS%: POKE MM+1, MS%

220 RETURN

230 PRINT "INVALID DESTINATION": STOP
240 PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #2.

36

THE Z-80 INSTRUCTION SET

Part Six:
The Z-80 Instruction Set

Notation and Other Conventions

This section includes a detailed description of all the z-80 assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no
operands at all. Other instructions have one or two operands. Anything which
is capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LD r,r’

LD is the mnemonic for the Load instruction. If you wish to move the contents
of register H into register A, the actual source code is

LD A,H
This should be read as ‘‘load register A with the contents of register H.”’

A detailed explanation of the operand notation is given below, but in general
you should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC
HL means that 1 is to be added to the HL register pair. The instruction INC (HL)
means that 1 will be added to a number in memory whose address is found in
register pair HL.

Symbol Specifies one of the registers
r A,B,C,D,E,H,0rL.

Symbol Specifies a register pair

qq BC, DE, HL, OT AF

ss BC, DE, HL, Or SP

dd BC, DE, HL, Or SP

PP BC, DE, IX, O SP

rr BC, DE, IX, Or SP

37

SERIES | EDITOR/ASSEMBLER
S

Symbol Specifies a number or symbol in the range
n 0 to 255 (one byte)

nn 0 to 65535 (two bytes)

d — 128 to 127 (one byte)

e — 126 to 129 (one byte)

Symbol Specifies any of the following

S r, n, (HL), (IX+d), or (Iy +d)

m r, (HL) (IX +4), or (IY +d)

(nn) Specifies the contents of memory location nn
b Specifies an expression in the range (0,7)

cc Specifies the state of the Flags for conditional R, Jp, CALL and

RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)

Operation: I (HL)
This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r.

When you write the assembly language code, the lowercase r will be replaced
by A,B,C,D,E,Hor L.

Format:
Mnemonic: LD Operands: r,(HL)

Object Code:

I I | T T 1 [

0O 1 r r r 1 1 O
[N IR NN BN R

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code Object Code
LD A,(HL) 01111110
LD B,(HL) 01000110
LD C,(HL) 01001110

38

THE Z-80 INSTRUCTION SET

This instruction uses two machine (M) cycles. The first machine cycle consists
of four timing (T) states and the second machine cycle consists of three T states
for a total of seven T states. In the TRS-80 one T state takes .5636714
microseconds because the clock speed is 1.774038 MHz, for Model I, 4 MHz
for Model IT' and 2.02752 MHz for Model I1I. The execution time (E.T.), in
microseconds, is calculated for the TRS-80. (One microsecond is 10~ seconds
or 1/1,000,000 of a second.)

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75
Condition Bits Affected: None

Example:

If register pair HL contains the number 75SA1H, and memory address 75 A1H
contains the byte 58H, the execution of
LD C, (HL)

will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: |IF cc TRUE, PCdnn

The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program
to jump to address nn.

When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number
from O to 65535 or a label.

39

SERIES | EDITOR/ASSEMBLER
P S

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

I | I I I I I

1 1 ¢ ¢cc cc 0 1 O
I T E T T

[[I I I I |

n n n n n n n n
| | | | I | |

Note: The first n operand in this assembled object code is the low order byte of
a two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object
code, replace bits 3, 4 and 5 of the first byte with the appropriate number from
the table. The second two bytes of the object code are the address being jumped
to. For example:

Source Code Object Code

JP NZ, OFF00H 11000010 C2H
00000000 00H
11111111 FFH

JP M, 1002H 11111010 FAH
00000010 02H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. Condition
cc is programmed as one of eight status bits which correspond to condition bits
in the Flag Register (register F). These eight status bits are defined in the table
below which also specifies the corresponding cc bit fields in the assembled
object code.

The Relevant Flag column shows the value the flag must have if the jump is to
occur.

40

THE Z-80 INSTRUCTION SET

Relevant
cc Condition Flag
000 NZ non zero Z =0
001 Z zero Zz =1
010 NC no carry C =0
011 C carry cC =1
100 PO parity odd or no overflow PV =20
101 PE parity even or overflow PV =1
110 P sign positive S =0
111 M sign negative S =1

M cycles: 3 T states: 10(4,3,3) 4 MHzE.T.:2.50
Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are O3H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address 1520H the byte 03H. In other words, program
execution jumps to the instruction at 1520H.

Format Example 3

CPIR

Operation: A — (HL), HL HL +1, BC¢BC—1

The shorthand description indicates that three different things are happening:
1. BC is decremented
2. HL is incremented

3. A byte in memory is subtracted from the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

41

SERIES | EDITOR/ASSEMBLER

Object Code:
T T T T T T 1
1 1.1 0 1 1 0 1 ED
Lo
T T T T T 1
1 0 1 1 0 O 0 1 B1
L

The assembly language instruction has no operands.
The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL is incremented and the Byte Counter (register

pair BC) is decremented. If decrementing causes the BC to go to zero or if

A = (HL), the instruction is terminated. If BC is not zero and A # (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC#0 and A # (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4MHzET.:5.25
For BC=0 or A=(HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

The total execution time of this instruction depends on how long it takes to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC=0 or A =(HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte
Counter contains @007H, and memory locations have these contents:

(1111H) : 52H
(1112H) : 00H
(1113H) : F3H

42

THE Z-80 INSTRUCTION SET

then after the execution of
CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC #0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, the Z flag is set.

The CPIR instruction will affect five of the six condition codes.

43

THE Z-80 INSTRUCTION SET
=== e

Z-80 Instruction Set

Table of Contents

8BitLoad Groupt e 47
16 BitLoad Group ...ttt 65
Exchange, Block Transfer

and Search Group e 87
8 Bit Arithmetic and Logical Group. 105
General Purpose Arithmetic

and CPU Control Groupsttt 135
16 Bit Arithmetic GIoupttt e 141
Rotate and Shift Group i 151
Bit Set, Reset

and Test GroUD oottt e 177
Jump Groupo 189
Call and Return Groupottt 201
Input and Output Group 211

45

8 BIT LOAD GROUP

8 Bit Load Group

LD r,r' LoaD

Operation: I {1’

Format:

Mnemonic: LD Operands: 1, '

Object Code:

Description:

The contents of any register r’ are loaded into any other register r. Note: r, r’
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r,r’
A = 111
B = 000
c = o001
D = 010
E = 011
H = 100
L 101

M cycles: 1 T states: 4 4MHzET.: 1.0
Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction

LD H,E

would result in both registers containing 10H.

47

SERIES | EDITOR/ASSEMBLER

LD rn

Operation: I IN

Format:

Mnemonic: LD Operands: r, n

Object Code:

Description:

LoaD

The eight-bit integer n is loaded into any register r, where r identifies register A,

B,C, D, E, Hor L, assembled as follows in the object code:

Register r
A = 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)
Condition Bits Affected: None

Example 1:

After the execution of
LD E,AS5H

the contents of register E will be ASH.

Example 2:

After the execution of
LD A,0
register A will contain zero.

48

4MHz ET.: 1.75

8 BIT LOAD GROUP

LD I',(H L) LoaD

Operation: I ¢ (HL)

Format:
Mnemonic: LD Operands: r, (HL)

Object Code:

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75
Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)
will result in 58H in register C.

LD r(IX +d) LoaD

Operation: I'{] (|X +d)

Format:
Mnemonic: LD Operands: r, (IX+d)

49

SERIES | EDITOR/ASSEMBLER

Object Code:

T I I I | I I

1 1 0 1 1 1 0 1 DD
L

| I I I I I I

Description:

The operand (IX +d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C,D, E, HorL, assembled as follows in the object code:

Register r

111
000
001
010
011
100
101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75

I

CIETmoO QW
I

I

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction
LD B,IX+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in
memory this program will load the first four bytes of the table into registers A,
B, Cand D.

LD IX, TABL ; IX points to the table
LD A, (IX+0) ; Load first byte

LD B, IX+1) ; Load second byte
LD C, (IX+2) ; Load third byte

LD D, IX+3) ; Load fourth byte

50

8 BIT LOAD GROUP

LD r,(IY + d) LoaD

Operation: I ((1Y +d)

Format:

Mnemonic: LD Operands: 1, (IY +d)

Object Code:

I I I I T [

1 1.1 1 1 1 0 1 FD
[N A S SR N

[[[i I I I

Description:

The operand (IY + d) (the contents of the Index Register I'Y summed with a
two’s complement displacement integer d) is loaded into register r, where r
identifies register A, B, C, D, E, H, or L, assembled as follows in the object
code:

Register r

111
000
001
010
011
100
101

M cycles: 5 T states: 19(4,4,3,5,3) 4MHz ET.: 4.75

CEmO QW
1 B O

Condition Bits Affected: None

Example:
If the Index Register I'Y contains the number 25AFH, the instruction
LD B,(IY+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

51

SERIES | EDITOR/ASSEMBLER

LD (H L),r LoaD

Operation: (HL) Qr

Format:
Mnemonic: LD Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, D, E,
H or L, assembled as follows in the object code:

Register r

111
000
001
010
011
100
101

M cycles: 2 T states: 7(4,3) 4MHzET.: 175

CImoQw»
| | 1 O 1

Condition Bits Affected: None

Example:

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B
memory address 2146H will also contain 29H.

LD (|X + d),r LoaD

Operation: (IX+d) {r

Format:
Mnemonic: LD Operands: (IX+d), r

52

8 BIT LOAD GROUP

Object Code:

Description:

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, a two’s complement displacement
integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as
follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75
Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register IX contains
3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into memory location
3106H.

LD (IY+d),r LoaD

Operation: (IY+d) Qr

Format:

Mnemonic: LD Operands: (IY+d), r

53

SERIES | EDITOR/ASSEMBLER
- =

Object Code:

T I I I I I I

1 1 1 1 1 1 0 1 FD
[N R R B S

I I [I [I T

Description:

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two’s complement
displacement integer. The symbol r is specified according to the following table.

Register r
A = 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 475
Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index Register I'Y contains
2A11H, then the instruction

LD (IY+4H),C

will perform the sum 2A11H + 4H, and will load 48H into memory location
2A15.

LD (H L),n LoaD

Operation: (HL) ¢n

Format:
Mnemonic: LD Operands: (HL), n

54

8 BIT LOAD GROUP

Object Code:

0 01 1 0 1 1 O 36

Description:

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4MHz ET.:2.50
Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction
LD (HL),28H
will result in the memory location 4444H containing the byte 28H.

LD (lX + d),n Load

Operation: (IX+d){n

Format:

Mnemonic: LD Operands: (IX+d), n

Object Code:
T T 1T T T 1
1 1.0 1 1 1 0 1 DD
[S N T N B
T T T T T 1
0 0 1. 1 0 1 1 0O 36
[Y S S O B

55

SERIES | EDITOR/ASSEMBLER

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two’s complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.: 4.75
Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction
LD (IX+5H),5AH

would result in the byte SAH in the memory address 219FH.
(219FH=219AH + 5H.)

LD (|Y+ d),n LoaD

Operation: (IY+d){n

Format:

Mnemonic: LD Operands: (IY+d), n

Object Code:

T T T T T 1

1 1 1 1 1 1 0 1 FD
[N NN N N N
T T T T T 1

0O 0 1 1 0 1 1 O 36
[I B S N B
T T T T T 1

Description:

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two’s complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.:4.75

Condition Bits Affected: None

56

8 BIT LOAD GROUP

Example:

If the Index Register I'Y contains the number A940H, the instruction
LD (IY+10H),97H
would result in byte 97H in memory location A950H.

LD A, (BC) LoaD

Operation: A { (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

T 1 T T T 1
0|0;O|011|0|110 0A

Description:

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75
Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,BOC)
will result in byte 12H in register A.

LD A, (DE) LoaD

Operation: A ((DE)

Format:

Mnemonic: LD Operands: A, (DE)

57

SERIES | EDITOR/ASSEMBLER

Object Code:

0 0 0 1 1 0 1 O 1A

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3) 4MHz ET.: 1.75
Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)
will result in byte 22H in register A.

LD A,(nn) LoaD

Operation: A {(NN)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:

I f T I I I

o 0 1 1 1 O 1 O 3A
[I RN N A N

T I I T 1 T

Description:

The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low order byte of a two-byte
memory address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz ET.: 3.25

58

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction
LD A,(8832H)
byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) ¢A

Format:
Mnemonic: LD Operands: (BC), A

Object Code:
1 T T T T 1

0 0 0 0 0 0 1 O 02
L

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75
Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair contains 1212H the
instruction

LD (BO),A
will result in 7AH being in memory location 1212H.

LD (DE),A LoaD
Operation: (DE) ¢A

Format:

Mnemonic: LD Operands: (DE), A

59

SERIES | EDITOR/ASSEMBLER

Object Code:

I r 1T T T I I

0 0 01 0 0 1 O 12
I S S N N

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4MHzET.: 175
Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
AQH, the instruction

LD (DE),A
will result in AQH being in memory location 1128H.

LD (nn),A LoaD

Operation: (NN) {A

Format:

Mnemonic: LD Operands: (nn), A

Object Code:

Description:

The contents of the Accumulator are loaded into the memory address specified
by the operands nn. The first n operand in the assembled object code above is
the low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

60

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A
D7H will be in memory location 3141H.

LD A, | LoaD

Operation: A {|

Format:

Mnemonic: LD Operands: A, I

Object Code:
T T T T T 1
1 1.1 0 1 1 0 1 ED
L1
1T T T T T 1
0 1.0 1 0 1 1 1 57
[N T N N N
Description:

The contents of the Interrupt Vector Register I are loaded into the Accumulator.
M cycles: 2 T states: 9(4,5) 4MHzET.:2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.
Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of
LD A
the accumulator will also contain 4AH.

61

SERIES | EDITOR/ASSEMBLER

LD AR LoaD

Operation: A QR

Format:
Mnemonic: LD Operands: A, R

Object Code:
T 1T T T T T 1
1|1|1|0|1|1|011 ED
T 1 1 T T T 1
o 1 0 1 1 1 1 1 SF
I R T N R
Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.
M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset '

C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of
LD AR
the Accumulator will also contain 4AH.

LD |,A LoaD

Operation: | A

Format:

Mnemonic: LD Operands: [, A

62

8 BIT LOAD GROUP

1 1.1 0 1 1 0 1 ED
[N TR S N
T T T T T 1
01 0 0 O 1 1 1 47
[S N TN N B
Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, I.

M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25
Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction
LD LA
the Interrupt Vector Register will also contain 81H.

LD R,A LoaD

Operation: RGA

Format:

Mnemonic: LD Operands: R, A

Object Code:
T T 1 I
1 1.1 0 1 1 O 1 ED
N NN R T N
T T T T T 1
O 1 0 0 1 1 1 1 4F
AN NN N N NN |
Description:

The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25

Condition Bits Affected: None

63

SERIES | EDITOR/ASSEMBLER
- -~

Example:

If the Accumulator contains the number B4H, after the instruction
LD R,A
the Memory Refresh Register will also contain B4H.

64

16 BIT LOAD GROUP

16 Bit Load Group
LD dd,nn LoaD

Operation: dd ¢ nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

I | [I [I I

0 0 d d 0 0 0 1
I I N N N B

I I I I I I [

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.: 2.50
Condition Bits Affected: None

Example:

After the execution of
LD HL,5000H
the contents of the HL register pair will be S000H.

65

SERIES | EDITOR/ASSEMBLER

After the execution of
LD BC,2501H
the BC register will contain 2501H.

LD IX,nn LoaD

Operation: IX {nn

Format:

Mnemonic: LD Operands: [X, nn

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
[N SR TR N
T T T T T 1
0 0 1 o0 0 0 0 1 21

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50
Condition Bits Affected: None

Example:

After the instruction
LD IX,45A2H
the Index Register will contain integer 45A2H.

66

16 BIT LOAD GROUP

LD IY,nn LoaD

Operation: Y {nn

Format:

Mnemonic: LD Operands: 1Y, nn

Object Code:
T T T T T 1
1 1.1 1 1 1 0 1 FD
R Y S S R B
T T T T T 1
0 01 00 0 0 1 21
L1
T T T T T T 1

Description:

Integer nn is loaded into the Index Register Y. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50
Condition Bits Affected: None

Example:

After the instruction:
LD 1Y,7733H
the Index Register IY will contain the integer 7733H.

LD HL,(nn) LoaD

Operation: H¢(nn+ 1), L4(nn)

Format:

Mnemonic: LD Operands: HL, (nn)

67

SERIES | EDITOR/ASSEMBLER

Object Code:

I I I] I I |

o 0 1.0 1 O 1 O 2A
I S R R N N

[I I I I I I

| | | 1 | | I

I I I I I I I

| | | 1 | | 1

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn+ 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz ET.: 4.00
Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A1H, after the
instruction

LD HL,(4545H)
the HL register pair will contain A137H.

LD dd,(nn) LoaD

Operation: ddy ¢ (Nn+ 1), dd, 4(nn)

Format:
Mnemonic: LD Operands: dd, (nn)

Object Code:

I I I I I I I

1 1.1 0 1 1 0 1 ED
[N N R N B B

I I I | I [I

| | | |] | |

68

16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn + 1) are loaded
into the high order portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHzET.:5.00
Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)
the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)
the SP will contain 0201H.

LD IX,(nn) LoaD

Operation: IXy ¢ (nn+ 1), IX_ ¢(nn)

Format:

Mnemonic: LD Operands: X, (nn)

69

SERIES | EDITOR/ASSEMBLER
=== =

Object Code:
T T T T T 1
1 1.0 1 1 1 0 1 DD
Lo
I T I I T I I
0 01 0 1 0 1 O 2A

Description:

The contents of the address nn are loaded into the low order portion of Index
Register IX, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz ET.: 5.00
Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)
the Index Register IX will contain DA92H.

LD IY,(nn) LoaD

Operation: [Y,@(nn+ 1), IY_Q(nn)

Format:

Mnemonic: LD Operands: 1Y, (nn)

70

16 BIT LOAD GROUP

Object Code:
T T T T T 1
1 1.1 1 1 1 0 1 FD
[N NN N N B
T T T T T 1
0 01 061 0 1 O 2A
I T N N M B

Description:

The contents of address nn are loaded into the low order portion of Index
Register 1Y, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IY. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.:5.00
Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction

LD IY,(6666H)
the Index Register IY will contain DA92H.

LD (nn),HL LoaD

Operation: (NN + 1) GH, (nn) 4L

Format:

Mnemonic: LD Operands: (nn), HL

71

SERIES | EDITOR/ASSEMBLER

Object Code:

I I I I I I I

0 010 0 0 1 O 22
L

I I I I I f T

Description:

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn + 1). The first
n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz ET.: 4.00
Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction
LD (B229H),HL
address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE + 1 will contain 50H.
Note: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (NN + 1) 4ddy, (Nn) ¢dd,

Format:

Mnemo